链表操作:遍历、插入和删除

在本教程中,您将学习链表上的遍历、插入和删除等操作。

有多种链表操作允许我们对链表执行不同的操作。例如,插入操作向链表添加一个新元素。

这是我们将在本文中介绍的基本链表操作列表。

  • 遍历 - 访问链表的每个元素
  • 插入 - 向链表添加一个新元素
  • 删除 - 删除现有元素
  • 搜索 - 在链表中找到一个节点
  • 排序 - 对链表的节点进行排序

在详细了解链表操作之前,请务必先了解链表

关于链表要记住的事情

  • head 指向链表的第一个节点
  • 最后一个节点的 next 指针是 NULL,所以如果当前节点的 next 是无效的,我们已经到达链表的末尾。

在下面的所有的例子中,我们假设链表有三个节点 1 -> 2 -> 3,节点结构如下:

struct node {
  int data;
  struct node *next;
};

遍历链表

显示链表的内容非常简单。我们不断将临时节点移动到下一个节点并显示其内容。

什么时候 temp 是 无效的,我们知道我们已经到达链表的末尾,所以我们退出了 while 循环。

struct node *temp = head;
printf("\n\nList elements are - \n");
while(temp != NULL) {
  printf("%d --->",temp->data);
  temp = temp->next;
}

该程序的输出将是:

List elements are -
1 --->2 --->3 --->

将元素插入链表

您可以将元素添加到链表的开头、中间或结尾。

在开头插入

  • 为新节点分配内存
  • 存储数据
  • 将新节点的下一个更改为指向头
  • 将头更改为指向最近创建的节点
struct node *newNode;
newNode = malloc(sizeof(struct node));
newNode->data = 4;
newNode->next = head;
head = newNode;

在末尾插入

  • 为新节点分配内存
  • 存储数据
  • 遍历到最后一个节点
  • 将最后一个节点的下一个更改为最近创建的节点
struct node *newNode;
newNode = malloc(sizeof(struct node));
newNode->data = 4;
newNode->next = NULL;

struct node *temp = head;
while(temp->next != NULL){
  temp = temp->next;
}

temp->next = newNode;

中间插入

  • 为新节点分配内存和存储数据
  • 遍历到新节点所需位置之前的节点
  • 将新节点的下一个更改为当前节点的下一个指向的节点
  • 更改当前节点的下一个为新节点
struct node *newNode;
newNode = malloc(sizeof(struct node));
newNode->data = 4;

struct node *temp = head;

for(int i=2; i < position; i++) {
  if(temp->next != NULL) {
    temp = temp->next;
  }
}
newNode->next = temp->next;
temp->next = newNode;

从链表中删除

您可以从开头、结尾或从特定位置删除链表中的节点。

删除链表的头

  • 将头指向第二个节点
head = head->next;

删除链表的尾

  • 遍历到倒数第二个元素
  • 将其下一个指针更改为空
struct node* temp = head;
while(temp->next->next!=NULL){
  temp = temp->next;
}
temp->next = NULL;

从链表中间删除

  • 遍历到要删除元素之前的元素
  • 更改下一个指针以从链中排除节点
for(int i=2; i< position; i++) {
  if(temp->next!=NULL) {
    temp = temp->next;
  }
}

temp->next = temp->next->next;

在链表上搜索元素

您可以使用以下步骤使用循环搜索链表上的元素。我们需要在一个链表上找到 item

  • current 节点之乡 head
  • 运行一个循环,直到 current 节点是 NULL 因为最后一个元素指向 NULL
  • 在每次迭代中,检查节点的键是否等于item。如果键匹配该项目,则返回 true,否则返回 false
// Search a node
bool searchNode(struct Node** head_ref, int key) {
  struct Node* current = *head_ref;

  while (current != NULL) {
    if (current->data == key) return true;
      current = current->next;
  }
  return false;
}

对链表的元素进行排序

我们将使用一个简单的排序算法,冒泡排序,在下面按升序对链表的元素进行排序。

  1. 使 head 作为 current 节点,并创建另一个节点 index 以备后用。
  2. 如果 head 为空,则返回。
  3. 否则,运行一个循环直到最后一个节点(即NULL)。
  4. 在每次迭代中,请遵循以下步骤 5-6。
  5. index 中存储 current 的下一个节点。
  6. 检查当前节点的数据是否大于下一个节点。如果它更大,交换 currentindex
// Sort the linked list
void sortLinkedList(struct Node** head_ref) {
  struct Node *current = *head_ref, *index = NULL;
  int temp;

  if (head_ref == NULL) {
    return;
  } else {
    while (current != NULL) {
      // index points to the node next to current
      index = current->next;

    while (index != NULL) {
        if (current->data > index->data) {
          temp = current->data;
          current->data = index->data;
          index->data = temp;
        }
        index = index->next;
    }
    current = current->next;
    }
  }
}

Python、Java、C 和 C++ 中的链表操作

使用 Python 操作链表

# Create a node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:

    def __init__(self):
        self.head = None

    # Insert at the beginning
    def insertAtBeginning(self, new_data):
        new_node = Node(new_data)

        new_node.next = self.head
        self.head = new_node

    # Insert after a node
    def insertAfter(self, prev_node, new_data):

        if prev_node is None:
            print("The given previous node must inLinkedList.")
            return

        new_node = Node(new_data)
        new_node.next = prev_node.next
        prev_node.next = new_node

    # Insert at the end
    def insertAtEnd(self, new_data):
        new_node = Node(new_data)

        if self.head is None:
            self.head = new_node
            return

        last = self.head
        while (last.next):
            last = last.next

        last.next = new_node

    # Deleting a node
    def deleteNode(self, position):

        if self.head is None:
            return

        temp = self.head

        if position == 0:
            self.head = temp.next
            temp = None
            return

        # Find the key to be deleted
        for i in range(position - 1):
            temp = temp.next
            if temp is None:
                break

        # If the key is not present
        if temp is None:

使用 Java 操作链表

class LinkedList {
  Node head;

  // Create a node
  class Node {
    int data;
    Node next;

    Node(int d) {
      data = d;
      next = null;
    }
  }

  // Insert at the beginning
  public void insertAtBeginning(int new_data) {
    // insert the data
    Node new_node = new Node(new_data);
    new_node.next = head;
    head = new_node;
  }

  // Insert after a node
  public void insertAfter(Node prev_node, int new_data) {
    if (prev_node == null) {
      System.out.println("The given previous node cannot be null");
      return;
    }
    Node new_node = new Node(new_data);
    new_node.next = prev_node.next;
    prev_node.next = new_node;
  }

  // Insert at the end
  public void insertAtEnd(int new_data) {
    Node new_node = new Node(new_data);

    if (head == null) {
      head = new Node(new_data);
      return;
    }

    new_node.next = null;

    Node last = head;
    while (last.next != null)
      last = last.next;

    last.next = new_node;
    return;
  }

  // Delete a node
  void deleteNode(int position) {
    if (head == null)
      return;

    Node temp = head;

    if (position == 0) {
      head = temp.next;
      return;
    }
    // Find the key to be deleted
    for (int i = 0; temp != null && i < position - 1; i++)
      temp = temp.next;

    // If the key is not present
    if (temp == null || temp.next == null)
      return;

    // Remove the node
    Node next = temp.next.next;

    temp.next = next;
  }

  // Search a node
  boolean search(Node head, int key) {
    Node current = head;
    while (current != null) {
      if (current.data == key)
        return true;
      current = current.next;
    }
    return false;
  }

  // Sort the linked list
  void sortLinkedList(Node head) {
    Node current = head;
    Node index = null;
    int temp;

    if (head == null) {
      return;
    } else {
      while (current != null) {
        // index points to the node next to current
        index = current.next;

        while (index != null) {
          if (current.data > index.data) {
            temp = current.data;
            current.data = index.data;
            index.data = temp;
          }
          index = index.next;
        }
        current = current.next;
      }
    }
  }

  // Print the linked list
  public void printList() {
    Node tnode = head;
    while (tnode != null) {
      System.out.print(tnode.data + " ");
      tnode = tnode.next;
    }

  }

  public static void main(String[] args) {
    LinkedList llist = new LinkedList();

    llist.insertAtEnd(1);
    llist.insertAtBeginning(2);
    llist.insertAtBeginning(3);
    llist.insertAtEnd(4);
    llist.insertAfter(llist.head.next, 5);

    System.out.println("Linked list: ");
    llist.printList();

    System.out.println("\nAfter deleting an element: ");
    llist.deleteNode(3);
    llist.printList();

    System.out.println();
    int item_to_find = 3;
    if (llist.search(llist.head, item_to_find))
      System.out.println(item_to_find + " is found");
    else
      System.out.println(item_to_find + " is not found");

    llist.sortLinkedList(llist.head);
    System.out.println("\nSorted List: ");
    llist.printList();
  }
}

使用 C 操作链表

#include <stdio.h>
#include <stdlib.h>

// Create a node
struct Node {
  int data;
  struct Node* next;
};

// Insert at the beginning
void insertAtBeginning(struct Node** head_ref, int new_data) {
  // Allocate memory to a node
  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

  // insert the data
  new_node->data = new_data;

  new_node->next = (*head_ref);

  // Move head to new node
  (*head_ref) = new_node;
}

// Insert a node after a node
void insertAfter(struct Node* prev_node, int new_data) {
  if (prev_node == NULL) {
  printf("the given previous node cannot be NULL");
  return;
  }

  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
  new_node->data = new_data;
  new_node->next = prev_node->next;
  prev_node->next = new_node;
}

// Insert the the end
void insertAtEnd(struct Node** head_ref, int new_data) {
  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
  struct Node* last = *head_ref; /* used in step 5*/

  new_node->data = new_data;
  new_node->next = NULL;

  if (*head_ref == NULL) {
  *head_ref = new_node;
  return;
  }

  while (last->next != NULL) last = last->next;

  last->next = new_node;
  return;
}

// Delete a node
void deleteNode(struct Node** head_ref, int key) {
  struct Node *temp = *head_ref, *prev;

  if (temp != NULL && temp->data == key) {
  *head_ref = temp->next;
  free(temp);
  return;
  }
  // Find the key to be deleted
  while (temp != NULL && temp->data != key) {
  prev = temp;
  temp = temp->next;
  }

  // If the key is not present
  if (temp == NULL) return;

  // Remove the node
  prev->next = temp->next;

  free(temp);
}

// Search a node
int searchNode(struct Node** head_ref, int key) {
  struct Node* current = *head_ref;

  while (current != NULL) {
  if (current->data == key) return 1;
  current = current->next;
  }
  return 0;
}

// Sort the linked list
void sortLinkedList(struct Node** head_ref) {
  struct Node *current = *head_ref, *index = NULL;
  int temp;

  if (head_ref == NULL) {
  return;
  } else {
  while (current != NULL) {
    // index points to the node next to current
    index = current->next;

    while (index != NULL) {
    if (current->data > index->data) {
      temp = current->data;
      current->data = index->data;
      index->data = temp;
    }
    index = index->next;
    }
    current = current->next;
  }
  }
}

// Print the linked list
void printList(struct Node* node) {
  while (node != NULL) {
  printf(" %d ", node->data);
  node = node->next;
  }
}

// Driver program
int main() {
  struct Node* head = NULL;

  insertAtEnd(&head, 1);
  insertAtBeginning(&head, 2);
  insertAtBeginning(&head, 3);
  insertAtEnd(&head, 4);
  insertAfter(head->next, 5);

  printf("Linked list: ");
  printList(head);

  printf("\nAfter deleting an element: ");
  deleteNode(&head, 3);
  printList(head);

  int item_to_find = 3;
  if (searchNode(&head, item_to_find)) {
  printf("\n%d is found", item_to_find);
  } else {
  printf("\n%d is not found", item_to_find);
  }

  sortLinkedList(&head);
  printf("\nSorted List: ");
  printList(head);
}

使用 C++ 操作链表

#include <stdlib.h>

#include <iostream>
using namespace std;

// Create a node
struct Node {
  int data;
  struct Node* next;
};

void insertAtBeginning(struct Node** head_ref, int new_data) {
  // Allocate memory to a node
  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));

  // insert the data
  new_node->data = new_data;
  new_node->next = (*head_ref);

  // Move head to new node
  (*head_ref) = new_node;
}

// Insert a node after a node
void insertAfter(struct Node* prev_node, int new_data) {
  if (prev_node == NULL) {
  cout << "the given previous node cannot be NULL";
  return;
  }

  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
  new_node->data = new_data;
  new_node->next = prev_node->next;
  prev_node->next = new_node;
}

// Insert at the end
void insertAtEnd(struct Node** head_ref, int new_data) {
  struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
  struct Node* last = *head_ref; /* used in step 5*/

  new_node->data = new_data;
  new_node->next = NULL;

  if (*head_ref == NULL) {
  *head_ref = new_node;
  return;
  }

  while (last->next != NULL) last = last->next;

  last->next = new_node;
  return;
}

// Delete a node
void deleteNode(struct Node** head_ref, int key) {
  struct Node *temp = *head_ref, *prev;

  if (temp != NULL && temp->data == key) {
  *head_ref = temp->next;
  free(temp);
  return;
  }
  // Find the key to be deleted
  while (temp != NULL && temp->data != key) {
  prev = temp;
  temp = temp->next;
  }

  // If the key is not present
  if (temp == NULL) return;

  // Remove the node
  prev->next = temp->next;

  free(temp);
}

// Search a node
bool searchNode(struct Node** head_ref, int key) {
  struct Node* current = *head_ref;

  while (current != NULL) {
  if (current->data == key) return true;
  current = current->next;
  }
  return false;
}

// Sort the linked list
void sortLinkedList(struct Node** head_ref) {
  struct Node *current = *head_ref, *index = NULL;
  int temp;

  if (head_ref == NULL) {
  return;
  } else {
  while (current != NULL) {
    // index points to the node next to current
    index = current->next;

    while (index != NULL) {
    if (current->data > index->data) {
      temp = current->data;
      current->data = index->data;
      index->data = temp;
    }
    index = index->next;
    }
    current = current->next;
  }
  }
}

// Print the linked list
void printList(struct Node* node) {
  while (node != NULL) {
  cout << node->data << " ";
  node = node->next;
  }
}

// Driver program
int main() {
  struct Node* head = NULL;

  insertAtEnd(&head, 1);
  insertAtBeginning(&head, 2);
  insertAtBeginning(&head, 3);
  insertAtEnd(&head, 4);
  insertAfter(head->next, 5);

  cout << "Linked list: ";
  printList(head);

  cout << "\nAfter deleting an element: ";
  deleteNode(&head, 3);
  printList(head);

  int item_to_find = 3;
  if (searchNode(&head, item_to_find)) {
  cout << endl << item_to_find << " is found";
  } else {
  cout << endl << item_to_find << " is not found";
  }

  sortLinkedList(&head);
  cout << "\nSorted List: ";
  printList(head);
}